
Visual jQuery
The Magazine

THE MAN BEHIND THE MAGIC: WE INTERVIEW JQUERY’S JOHN RESIG

Issue 1 … September 2006

$ TUTORIAL

An Introduction
to the World of
jQuery—Starting
With the jQuery
Object Itself

INSIDE jQuery Plugin Rundown

$ JQUERY

Winning on
Philosophy:
Why jQuery’s
Approach Works

Plugin Roundup 10
Three great plugins for developing

rich applications with jQuery

Visual jQueryMagazine

From The Editor 3
Yehuda Katz on his web development

history, his favorites, and of course,

jQuery: the library and magazine.

Winning on Philosophy .. 4
What the jQuery Philosophy is and

why it works so well.

Tutorial Series 8
In our first tutorial, we explore the

jQuery object and what makes it

special.

Meet Dave
Cardwell

The creator of jQBrowser
and jQMinMax chats
with Visual jQuery
Magazine.

On Page 9

ISSUE 2
SNEAK PEEK

Next month, we have an interview with Klaus
Hartl, the creator of the popular Tabs plugin,
and a developer on Plazes.

Also, a tutorial on jQuery’s AJAX functional-
ity, a visual effects plugin roundup, another
article, and your letters. All on October 18.

Behind The Magic 6
The Man: An interview with John
Resig, father of jQuery

We Want Your Letters

Please submit letters to the editor to
editor@visualjquery.com. WE will print
letters relating to articles in the Magazine
or of general interest to the jQuery
community if space permits. We reserve
the right to reject any letter.

mailto:editor@visualjquery.com

�

As is traditional, I’d like my
first editorial to welcome new
readers to the Visual jQuery
Magazine.

Around a year ago, after a fairly
large amount of time doing
traditional web development,
I found myself interested in
this newfangled concept called
AJAX. I attended a workshop by
the luminary Thomas Fuchs, the
creator of Scriptaculous (based on the Prototype
library), and while I was quite impressed by the
capabilities of both Prototype and Scriptaculous,
something tugged at me.

After using them for a bit, and becoming somewhat
proficient at using Prototype to build responsive,
rich web applications, I realized that the learning
curve was far too steep. While I was able to do all
sorts of powerful things, I found myself constantly
reinventing the wheel for simple tasks. While AJAXy
Javascript has gotten the term “DOM Scripting,” I
barely felt the influence of the DOM in my day-to-day
Prototype development.

Thankfully, I came across Ruby on Rails shortly
thereafter, which does a darn good job of abstracting
out the entire concept of Javascript (and while the
now-popular RJS templates were not available yet, I
still found Rails’ Prototype helpers to take the edge
off).

A few months later, I came across the Interface library
in a post about the various cool effects (especially

notable was the selectables plugin),
and I followed the link home to
jQuery.

Immediately, I took to the framework,
which seemed to think the way I
was programming: by centering on
DOM Elements and tacking bits of
functionality on top of them, jQuery
made Javascript fun again.

jQuery was far ahead of the pack,
even then, with documentation, but I quickly dove
in, trying to organize the jQuery documentation
wiki, and eventually throwing up the first iteration of
Visual jQuery, the slick visual representation of the
jQuery API. When jQuery 1.0 began to include the
documentation built-in, I retooled Visual jQuery to
take advantage of that.

I suspect many of this magazine’s readers took
parallel paths to finding jQuery. Still others, initially
horrified at the prospect of learning Java, were no
doubt pleasantly surprised at just how easy it is to
learn jQuery. Hopefully this magazine will appeal to
both sorts. For the seasoned jQueryist, we bring you
advanced techniques, and a rundown of plugins
that will supercharge your next project.

For the beginner, we’ll be featuring ground-up
tutorials on the framework, helping you to build your
first project with a solid grasp of what you’re doing,
not just copying and pasting code snippets.

With that, I leave you to the magazine. Good luck
with jQuery!

. . . From The Editor
Meet Dave
Cardwell

The creator of jQBrowser
and jQMinMax chats
with Visual jQuery
Magazine.

On Page 9

ISSUE 2
SNEAK PEEK

Next month, we have an interview with Klaus
Hartl, the creator of the popular Tabs plugin,
and a developer on Plazes.

Also, a tutorial on jQuery’s AJAX functional-
ity, a visual effects plugin roundup, another
article, and your letters. All on October 18.

We Want Your Letters

Please submit letters to the editor to
editor@visualjquery.com. WE will print
letters relating to articles in the Magazine
or of general interest to the jQuery
community if space permits. We reserve
the right to reject any letter.

mailto:editor@visualjquery.com

�

WINNING ON PHILOSOPHY

Why jQuery’s Approach Works

By Yehuda Katz

The approach jQuery takes
isn’t just “cleaner code” or “chain-
ability.” Its fundamental philoso-
phy, centering on collections of
DOM Elements, puts it squarely
where most Javascript developers
program most.

By contrast, other frameworks,

like Prototype and Dojo, take a
functional approach. Sure, they’re
fully capable of addressing DOM
Elements, just like jQuery, other
frameworks make entirely differ-
ent choices.

Prototype, for one, fancies it-
self a true Object Oriented exten-
sion of Javascript’s paltry native
offerings. In pursuit of true object-

orientedness, its developers have
put a substantial amount of time
into developing object-oriented
classes for different types of func-
tionality. A class for forms, a class
for elements, a class for events. It
goes on and on.

It’s perfectly possible to write
clean, good-looking Prototype
code.

Illustration By Jörn Zaefferer

Why jQuery’s Approach Works

mailto:Enchos@gmx.net

�

SOME BASIC JQUERY

WINNING ON PHILOSOPHY

And Prototype can emulate
one of the best things about jQue-
ry’s focus on DOM Element collec-
tions: its chainability. But jQuery
conceives of modern Javascript
development the way many major
players in the Javascript commu-
nity are starting to see it: as DOM
Scripting first and foremost.

For those of us whose Javas-
cript programming focuses pri-
marily on page elements, and I
suspect that’s most of us, jQuery
makes the work dead simple.

jQuery Workflow

Most jQuery methods start with
the the collection of elements, us-
ing the handy support for CSS3,
XPath, and a slew of custom ex-
pressions (like :visible, which re-
turns only visible elements, and
:checked, which returns only
checked form fields).

Once you obtain a group of
elements, the fun begins. Add
.fadeIn(“slow”) and each of the el-
ements will fade in—slowly.

But we’re not done. Without
skipping a beat, add .addClass(“th
isIsDamnFun”). Each element will
get the class “thisIsDamnFun.” It
is, isn’t it?

And it can go on from there.
Add .click(function() { alert(“Hello”)
}); to throw up an alert box when
any of the elements are clicked.
Add .append(“Hello”) and the word
hello will be appended to the end
of each of the matched elements.
Cool, huh?

jQuery Selectors

Now that you’ve seen the pow-
er of jQuery methods, how do we
get the element collection in the
first place? Happily, we have CSS
(1-3) at our disposal, as well as a

limited subset of XPath, and some
nice custom expressions thrown
in for good measure.

When I say CSS3, I mean
it. jQuery supports the ~ selec-
tor, :not(expr), attributes via [@
attr=’whatever’].

XPath support is a bit more
limited, but most of the good
stuff is here. The / and // opera-
tors are available, as are parent
and preceding sibling axes. jQuery
supports :first, :last, and :eq(n), a
slimmed down version of [posi-
tion() = n].

Finally, jQuery supports testing
for contained elements via [tag-
Name]. And because the jQuery
parses operates on XHTML, it can
be easily co-opted for parsing raw
XML from AJAX requests.

And of course, jQuery has the
full complement of AJAX methods
through $.ajax, and $().load.

$(“a”)

Inside the a
element is
a group of p
elements

$(“a”).find(“p”)

THE MAN BEHIND THE MAGIC
JOHN RESIG >>

I rarely have to
answer questions
on the mailing list

anymore—the community
is self-maining and quite
active.

�

This magazine, and jQuery it-
self, owe their existence to the
strong unyielding vision of John
Resig. Like many children of the
‘80s, John grew up as computers
grew up.

His first programming lan-
guage, the ubiquitous QBASIC, un-
derscores John’s intellectual curi-
osity for programming. With the
exception of Java, all of his pro-
gramming skills are self-taught.,
which makes his upcoming book,
Pro Javascript Techniques, due to
be published this December by
APress, even more of an accom-
plishment.

While he doesn’t much care
for Java, he believes in watching
talented programmers in their ele-
ment: he keeps tabs on more than
250 web feeds a day. “Seeing an
amazing program-
mer in his ‘natural
habitat’ is always a
thing of beauty,” Re-
sig said.

Of his many in-
fluences, Resig cit-
ed Alex Russell of
Dojo, and Dean Ed-
wards of IE7 fame
as the most con-
sistently interest-
ing. “If there’s any
Javascript develop-
ers that I admire and respect, it’s
them.”

While he has respect for the
developers of more established
frameworks like Dojo and Proto-
type, Resig, like David Heinemeier
Hansen of Rails fame, has some
very strong opinions that drive the
framework.

Like Ruby on Rails, jQuery can
be seen as a sort of opinionated
software, where strong design phi-
losophies give developers a con-

sistent, simple way to approach
previously complex problems.

And in addition to a solid de-
sign philosophy, Resig doesn’t
skimp on the community side of
things. “I’m frequently discour-
aged by other project mailing lists,
where a simple misdirected ques-
tion will be answered with anger
and malice,” Resig said. “For ex-
ample, having a question come
in about Javascript, as opposed
to jQuery itself would be easy to
dismiss. But by taking the time
to answer it, you can win another
user.”

As part of his drive to ensure
the community has plenty of good
resources, John focused heavily
on documentation in the run-up to
the recently released version 1.0
of jQuery.

Before he would be satisfied
that the framework was produc-
tion ready, the code did not need
to be bug-free only; everything
needed to be documented.

It paid off. As a result of his
innovative documentation efforts,
version 1.0 of jQuery spawned
a dynamically updating Visual
jQuery documentation site, which
could be updated as often as the
codebase itself was updated. In
contrast to the old Visual jQuery,

which required tedious, manual
entry, the new site became a place
of first resort for keeping up with
the latest jQuery documentation.

Proving that jQuery is more
than just a fad, Resig will speak
at the Ajax Experience conference
next month, a conference orga-
nized by the popular Ajaxian.com.
In addition to a talk about jQuery
itself, he will present a discussion
on choosing a Javascript frame-
work.

The run-up to jQuery 1.0 had
its share of hassles, but had its re-
wards as well. “The major tirumph
was simply getting the code out
the door. As any developer will tell
you, it’s not easy to actually ship,”
Resig said.

And the work he put into fos-
tering the jQuery community paid

off. “There’s quite a
few developers with
[subversion] access
who’ve been helping
out, resolving issues
as they come to
them.” While Resig
has lately become
busy with work and
completing his book
on Javascript, the
community picked
up the slack, keep-
ing the post-1.0 mo-

mentum going.
That’s not to say the release

went off without a hitch. “I had to
break the API in a couple ways.
Many method names were sim-
ply not as clear as they should’ve
been and caused many conflicts,”
Resig said. That said, virtually all
users worked out the difficulties,
and major plugins, like the Inter-
face visual effects library, released
updated versions simultaneously
with the official release of 1.0.

 ‘The major
triumph was simply
 getting the code
 out the door.’

�

JQUERY OBJECT
A BRIEF INTRODUCTION

jQuery, the framework, is fun-
damentally a way to manipulate
collections of DOM Elements.
You’ll find that’s a theme through-
out this magazine, but what does
a collection of DOM Elements re-
ally mean? And how does jQuery
make it easy to make use of these
collections?

DOM Element

A DOM Element is a single
HTML node, like a p or a. It can
be empty, or it can contain text or
other elements inside it.

Think of it this way: every time
you open a tag in HTML, you are
creating a DOM Element. Every-
thing inside that tag is a child of
the DOM Element.

An element can be a parent
element, which means it con-
tains other elements, or a child
element, which means it has a
parent element.

In the example on this
page, the p is a parent ele-
ment of both the span and
hr. The span is a child of the
p.

Elements can also be sib-
lings. That means they share
a parent. The span and hr in
the example on this page are
siblings, because they share
the p as a parent.

Collection of Elements

Traditionally, Javascript pro-
grammers have held collections
of DOM Elements in standard Ja-
vascript arrays.

Like any other array, it was
possible to check the size of the
array, iterate through the array,
and get array elements by index.
Basic array functions.

But there was nothing about
an array of DOM Elements that
set it apart from any other array.

Say you wanted to append a
class to each element in your col-
lection. You’d iterate through each
item in the collection with a regu-
lar loop, and add the class to each
element.

This worked perfectly fine,
and some of the more popular
frameworks refined the concept
to make it easier to do things
like add a class.

But underlying all the syntacti-
cal sugar, a collection of elements
was no different from a collection
of strings or a collection of inte-
gers.

Enter jQuery

The jQuery framework chang-
es all of that. Instead of seeing a
collection of elements as yet an-
other array, jQuery sees the collec-
tion as something uniquely DOM-
centric.

So in addition to the tradition-
al methods for getting the length
of an array and others, collections
of elements, held in a jQuery ob-
ject, can do all sorts of interesting
things.

First of all, you get elements

<p>

 Hello

 <hr />
</p>

span

p

hr

into a jQuery object in a very fa-
miliar way: through CSS selectors.
For instance, $(“a.fun”) will fill a
jQuery object with all a elements
on the page with the class fun.

You can think of a jQuery ob-
ject like a bucket that holds DOM
Elements.

Once we have a
jQuery object, we
can do any num-
ber of things to
the elements
it holds—all at
once.

Remember ear-
lier, when we wanted to
add a class to all of the elements
in our collection? In jQuery, we
can send a message to the object,
telling it to add the “hello” class to
every element in the bucket.

And the syntax is dead simple:
$(“a.fun”).addClass(“hello”);

There’s a lot of power packed
into that short expression. We’re
grabbing all of the elements on
the page matching a CSS expres-
sion, and adding, to each element
matched, the class “hello.”

What’s even more fun is mak-
ing jQuery chains. We can do $(“a.
fun”).addClass(“hello”).hide(). The
bucket of elements gets passed
to the hide method, which hides
them all.

And what makes jQuery spe-
cial is that all methods that make
modifications to a bucket of ele-
ments (the jQuery object) return

the modified object, so it can be
further manipulated.

Event Handling

Another common DOM Script-
ing need is the ability to bind
event handlers to various page el-
ements. For example, you might
want to change the class of an

element when it’s clicked, to in-
dicate that it’s been selected.
Say, for instance, you wanted to
add the class on to all p ele-
ments on the page with the
class clickable when they are

clicked. The syntax is classic jQue-
ry:

$(“p.clickable”).click(
 function() {
 $(this).addClass(“on”);
 });

There are a few Javascript and
jQuery idioms here, so let’s go
through the code step by step.

First, $(“p.clickable”) gets all
p elements on the page with the
class clickable and throws them
into a jQuery bucket.

The .click means that we are
defining an action the browser
should take when a
click event happens
on an element in
the bucket.

Actions to be
taken, or call-
backs, are defined
as anonymous Ja-
vascript functions,
or Javascript func-

tions without any name. Inside an
event handler’s callback, the this
keyword refers to the specific ele-
ment that had the event happen
to it.

You might wonder why we
needed to do $(this).addClass, and
not just this.addClass. Remember
that you can only run addClass
on objects in a jQuery bucket. In-
side an event handler, this refers
only to the element itself. $(this)
simply throws the element into
a jQuery bucket, which becomes
eligible to use the special jQuery
methods, like addClass.

Because click is a jQuery
method, you can chain additional
methods after it. If you remove
the semicolon at the end of the
command, you can add additional
methods on a new line:

$(“p.clickable”).click(...)
.append(
 “X”
).fadeTo(“slow”, 0.5);

will append a span to the end
of the p elements with class click-
able and then slowly fade them
out to 50 percent opacity.

KEY POINTS

Only jQuery objects (buckets of elements)
are eligible to use jQuery methods

Inside event handlers, this refers to the
element the event happened to

Write event handlers as anonymous
Javascript functions, as: function() { ... }

◌

◌

◌

 ‘You can think of a jQuery
 object like a bucket that
 holds DOM Elements’

10

PLUGINS
jTip by Cody Lindley

This page is actually
modeled after the jTip
plugin (yes, it’s that cool).
This tooltip solution
allows you to set AJAX
tooltips with pure XHTML
markup—after including
the jTip plugin, of course.

Code sample:
<a href=”ajax.htm” class=”jTip” id=”one”
 name=”Password must follow these
 rules:”>Text

dateSelector by Kelvin Luck

This widget is a sorely needed date selector for jQuery.
Notably, it resolved the select box glitch in IE, so its calendar
control can cover select boxes. dateSelector and the
checkbox control prove that jQuery can have a very robust set
of widgets. It is also heavily customizable by region.

Code sample:
<input type=”text” class=”date-picker” name=”date1”
id=”date1” />

Checkbox by Kawika K.

The checkbox plugin allows the use of any images instead
of the standard checkbox. It allows separate images for off,
hovered, and checked. Originally written by editing the raw CSS
properties, this new version uses CSS classes for simplicity.
The syntax, like the previous plugins, is dead simple.

Code sample:
$().cssCheckbox();

jQuery has a very simple plugin architecture
that allows developers to make use of the
quasi-magical properties of jQuery functions.

To create a new method that operates on
the jQuery object, developers need only cre-
ate a new function called jQuery.fn.foo, which
only needs to return a jQuery object itself (to
guarantee chainability). To play nice, a jQuery
function should iterate through elements au-
tomatically, to maintain consistency between
the core and plugins.

JQUERY AND PLUGINS

RICH APPLICATIONS

11

Meet Dave Cardwell . . .

Dave Cardwell was a programmer well
before his release of jQMinMax and
jQBrowser brought him fame in the
jQuery community.

“I was eight when my parents bought
me a green-screen Amstrad computer
and it wasn’t long before I was mucking
about with BASIC.”

Now, after a year at York University,
Cardwell describes himself as ‘a
freelance programmer working on his
design skills.’

He released his jQMinMax plugin in
early August 2006.

“At the time there was a lot of buzz
about a shift towards liquid and fluid
layouts. I wanted to create a plugin that
would be of immediate use to people
and I saw an opportunity for jQMinMax

here.” The plugin simulates max- and min- height and width in Internet Explorer.

As with many diehard jQuery fans, John Resig and his ever-active community were
a big part of what drew Cardwell in.

“It has to be the documentation and responsiveness of the community that first
endeared me to jQuery. While the syntax and functionality are lovely, there are
other libraries available that are comparable in features. It was these peripheral
benefits and a real sense of progress in the core library that kept me coming
back.”

For Dave, jQuery was a light at the end of the tunnel, where the tunnel was
Javascript, and the traffic cops didn’t show up to work.

“I was growing increasingly frustrated trying to track developments in the
JavaScript community - new techniques, event handling, document traversal and
so on. jQuery brought all these under a single roof for me, at a file size that
wouldn’t affect the responsiveness of my sites.”

According to Cardwell, newbies need not be afraid of experimenting with jQuery.

“The jQuery and Visual jQuery sites are indispensable, and when you’re genuinely
stumped I haven’t seen a question to the mailing list that went unanswered.”

Cardwell’s released multiple other plugins since he first began using the jQuery
library. More information on those plugins can be found at http://davecardwell.
co.uk/geekery/javascript/jquery/.

“I’m always more than happy to hear from like-minded folks - I can be contacted
from my website. I can also usually be found lurking in the #jquery IRC channel
on freenode.org.”

Publisher
Wycats Designs

Editor
Yehuda Katz

Contributors
Dave Cardwell

Klaus Hartl
John Resig
Leah Silber

Jörn Zaefferer

ABOUT US

Contributions are wel-
come (and desired). We
accept artwork, articles,
and interviews. We re-
serve the right to edit any
contribution for clarity
and good taste.

Please send contributions
to the magazine at edi-
tor@visualjquery.com

CONTRIBUTIONS

If you are interested in
having your plugin fea-
tured in an issue of the
Magazine, please send a
link to the plugin, a de-
scription, some details
about yourself, and, ide-
ally a photo of yourself.

We feature plugins in the-
matic groupings, so your
plugin may appear many
issues from now. It may
appear grouped with any
other plugin we feel is
appropriate. The titles,
descriptions, and details
of plugins are created by
the Magazine editors and
subject to our discretion.

PLUGINS

http://davecardwell.co.uk/geekery/javascript/jquery/jqminmax/
http://davecardwell.co.uk/geekery/javascript/jquery/jqminmax/
http://davecardwell.co.uk/geekery/javascript/jquery/
http://davecardwell.co.uk/geekery/javascript/jquery/
http://davecardwell.co.uk/
http://freenode.net/

12

JAVASCRIPT IS SEXY AGAIN

w w w . j Q u e r y . c o m

http://www.jquery.com

	Table of Contents
	From the Editor
	Winning on Philosophy
	John Resig Interview
	Tutorial
	Plugins
	Meet Dave Cardwell

